SSHD linux command manual

SSHD(8)                   BSD System Manager's Manual                  SSHD(8)

     sshd - OpenSSH SSH daemon

     sshd [-deiqtD46] [-b bits] [-f config_file] [-g login_grace_time]
          [-h host_key_file] [-k key_gen_time] [-o option] [-p port] [-u len]

     sshd (SSH Daemon) is the daemon program for ssh(1).  Together these pro-
     grams replace rlogin and rsh, and provide secure encrypted communica-
     tions between two untrusted hosts over an insecure network.  The pro-
     grams are intended to be as easy to install and use as possible.

     sshd is the daemon that listens for connections from clients.  It is
     normally started at boot from /etc/rc.  It forks a new daemon for each
     incoming connection.  The forked daemons handle key exchange, encryp-
     tion, authentication, command execution, and data exchange.  This imple-
     mentation of sshd supports both SSH protocol version 1 and 2 simultane-
     ously.  sshd works as follows:

   SSH protocol version 1
     Each host has a host-specific RSA key (normally 1024 bits) used to iden-
     tify the host.  Additionally, when the daemon starts, it generates a
     server RSA key (normally 768 bits).  This key is normally regenerated
     every hour if it has been used, and is never stored on disk.

     Whenever a client connects, the daemon responds with its public host and
     server keys.  The client compares the RSA host key against its own
     database to verify that it has not changed.  The client then generates a
     256 bit random number.  It encrypts this random number using both the
     host key and the server key, and sends the encrypted number to the
     server.  Both sides then use this random number as a session key which
     is used to encrypt all further communications in the session.  The rest
     of the session is encrypted using a conventional cipher, currently Blow-
     fish or 3DES, with 3DES being used by default.  The client selects the
     encryption algorithm to use from those offered by the server.

     Next, the server and the client enter an authentication dialog.  The
     client tries to authenticate itself using .rhosts authentication,
     .rhosts authentication combined with RSA host authentication, RSA chal-
     lenge-response authentication, or password based authentication.

     Rhosts authentication is normally disabled because it is fundamentally
     insecure, but can be enabled in the server configuration file if
     desired.  System security is not improved unless rshd, rlogind, and
     rexecd are disabled (thus completely disabling rlogin and rsh into the

   SSH protocol version 2
     Version 2 works similarly: Each host has a host-specific key (RSA or
     DSA) used to identify the host.  However, when the daemon starts, it
     does not generate a server key.  Forward security is provided through a
     Diffie-Hellman key agreement.  This key agreement results in a shared
     session key.

     The rest of the session is encrypted using a symmetric cipher, currently
     128 bit AES, Blowfish, 3DES, CAST128, Arcfour, 192 bit AES, or 256 bit
     AES.  The client selects the encryption algorithm to use from those
     offered by the server.  Additionally, session integrity is provided
     through a cryptographic message authentication code (hmac-sha1 or hmac-

     Protocol version 2 provides a public key based user (PubkeyAuthentica-
     tion) or client host (HostbasedAuthentication) authentication method,
     conventional password authentication and challenge response based meth-

   Command execution and data forwarding
     If the client successfully authenticates itself, a dialog for preparing
     the session is entered.  At this time the client may request things like
     allocating a pseudo-tty, forwarding X11 connections, forwarding TCP/IP
     connections, or forwarding the authentication agent connection over the
     secure channel.

     Finally, the client either requests a shell or execution of a command.
     The sides then enter session mode.  In this mode, either side may send
     data at any time, and such data is forwarded to/from the shell or com-
     mand on the server side, and the user terminal in the client side.

     When the user program terminates and all forwarded X11 and other connec-
     tions have been closed, the server sends command exit status to the
     client, and both sides exit.

     sshd can be configured using command-line options or a configuration
     file.  Command-line options override values specified in the configura-
     tion file.

     sshd rereads its configuration file when it receives a hangup signal,
     SIGHUP, by executing itself with the name it was started as, i.e.,

     The options are as follows:

     -b bits
             Specifies the number of bits in the ephemeral protocol version 1
             server key (default 768).

     -d      Debug mode.  The server sends verbose debug output to the system
             log, and does not put itself in the background.  The server also
             will not fork and will only process one connection.  This option
             is only intended for debugging for the server.  Multiple -d
             options increase the debugging level.  Maximum is 3.

     -e      When this option is specified, sshd will send the output to the
             standard error instead of the system log.

     -f configuration_file
             Specifies the name of the configuration file.  The default is
             /etc/ssh/sshd_config.  sshd refuses to start if there is no con-
             figuration file.

     -g login_grace_time
             Gives the grace time for clients to authenticate themselves
             (default 120 seconds).  If the client fails to authenticate the
             user within this many seconds, the server disconnects and exits.
             A value of zero indicates no limit.

     -h host_key_file
             Specifies a file from which a host key is read.  This option
             must be given if sshd is not run as root (as the normal host key
             files are normally not readable by anyone but root).  The
             default is /etc/ssh/ssh_host_key for protocol version 1, and
             /etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_dsa_key for pro-
             tocol version 2.  It is possible to have multiple host key files
             for the different protocol versions and host key algorithms.

     -i      Specifies that sshd is being run from inetd(8).  sshd is nor-
             mally not run from inetd because it needs to generate the server
             key before it can respond to the client, and this may take tens
             of seconds.  Clients would have to wait too long if the key was
             regenerated every time.  However, with small key sizes (e.g.,
             512) using sshd from inetd may be feasible.

     -k key_gen_time
             Specifies how often the ephemeral protocol version 1 server key
             is regenerated (default 3600 seconds, or one hour).  The motiva-
             tion for regenerating the key fairly often is that the key is
             not stored anywhere, and after about an hour, it becomes impos-
             sible to recover the key for decrypting intercepted communica-
             tions even if the machine is cracked into or physically seized.
             A value of zero indicates that the key will never be regener-

     -o option
             Can be used to give options in the format used in the configura-
             tion file.  This is useful for specifying options for which
             there is no separate command-line flag.

     -p port
             Specifies the port on which the server listens for connections
             (default 22).  Multiple port options are permitted.  Ports spec-
             ified in the configuration file are ignored when a command-line
             port is specified.

     -q      Quiet mode.  Nothing is sent to the system log.  Normally the
             beginning, authentication, and termination of each connection is

     -t      Test mode.  Only check the validity of the configuration file
             and sanity of the keys.  This is useful for updating sshd reli-
             ably as configuration options may change.

     -u len  This option is used to specify the size of the field in the utmp
             structure that holds the remote host name.  If the resolved host
             name is longer than len, the dotted decimal value will be used
             instead.  This allows hosts with very long host names that over-
             flow this field to still be uniquely identified.  Specifying -u0
             indicates that only dotted decimal addresses should be put into
             the utmp file.  -u0 may also be used to prevent sshd from making
             DNS requests unless the authentication mechanism or configura-
             tion requires it.  Authentication mechanisms that may require
             DNS include RhostsAuthentication, RhostsRSAAuthentication,
             HostbasedAuthentication and using a from="pattern-list" option
             in a key file.  Configuration options that require DNS include
             using a USER@HOST pattern in AllowUsers or DenyUsers.

     -D      When this option is specified sshd will not detach and does not
             become a daemon.  This allows easy monitoring of sshd.

     -4      Forces sshd to use IPv4 addresses only.

     -6      Forces sshd to use IPv6 addresses only.

     sshd reads configuration data from /etc/ssh/sshd_config (or the file
     specified with -f on the command line).  The file format and configura-
     tion options are described in sshd_config(5).

     When a user successfully logs in, sshd does the following:

           1.   If the login is on a tty, and no command has been specified,
                prints last login time and /etc/motd (unless prevented in the
                configuration file or by $HOME/.hushlogin; see the FILES sec-

           2.   If the login is on a tty, records login time.

           3.   Checks /etc/nologin; if it exists, prints contents and quits
                (unless root).

           4.   Changes to run with normal user privileges.

           5.   Sets up basic environment.

           6.   Reads $HOME/.ssh/environment if it exists and users are
                allowed to change their environment.  See the
                PermitUserEnvironment option in sshd_config(5).

           7.   Changes to user's home directory.

           8.   If $HOME/.ssh/rc exists, runs it; else if /etc/ssh/sshrc
                exists, runs it; otherwise runs xauth.  The "rc" files are
                given the X11 authentication protocol and cookie in standard

           9.   Runs user's shell or command.

     $HOME/.ssh/authorized_keys is the default file that lists the public
     keys that are permitted for RSA authentication in protocol version 1 and
     for public key authentication (PubkeyAuthentication) in protocol version
     2.  AuthorizedKeysFile may be used to specify an alternative file.

     Each line of the file contains one key (empty lines and lines starting
     with a '#' are ignored as comments).  Each RSA public key consists of
     the following fields, separated by spaces: options, bits, exponent, mod-
     ulus, comment.  Each protocol version 2 public key consists of: options,
     keytype, base64 encoded key, comment.  The options field is optional;
     its presence is determined by whether the line starts with a number or
     not (the options field never starts with a number).  The bits, exponent,
     modulus and comment fields give the RSA key for protocol version 1; the
     comment field is not used for anything (but may be convenient for the
     user to identify the key).  For protocol version 2 the keytype is
     "ssh-dss" or "ssh-rsa".

     Note that lines in this file are usually several hundred bytes long
     (because of the size of the public key encoding).  You don't want to
     type them in; instead, copy the, or the file and edit it.

     sshd enforces a minimum RSA key modulus size for protocol 1 and protocol
     2 keys of 768 bits.

     The options (if present) consist of comma-separated option specifica-
     tions.  No spaces are permitted, except within double quotes.  The fol-
     lowing option specifications are supported (note that option keywords
     are case-insensitive):

             Specifies that in addition to public key authentication, the
             canonical name of the remote host must be present in the comma-
             separated list of patterns ('*' and ''?  serve as wildcards).
             The list may also contain patterns negated by prefixing them
             with ''!; if the canonical host name matches a negated pattern,
             the key is not accepted.  The purpose of this option is to
             optionally increase security: public key authentication by
             itself does not trust the network or name servers or anything
             (but the key); however, if somebody somehow steals the key, the
             key permits an intruder to log in from anywhere in the world.
             This additional option makes using a stolen key more difficult
             (name servers and/or routers would have to be compromised in
             addition to just the key).

             Specifies that the command is executed whenever this key is used
             for authentication.  The command supplied by the user (if any)
             is ignored.  The command is run on a pty if the client requests
             a pty; otherwise it is run without a tty.  If an 8-bit clean
             channel is required, one must not request a pty or should spec-
             ify no-pty.  A quote may be included in the command by quoting
             it with a backslash.  This option might be useful to restrict
             certain public keys to perform just a specific operation.  An
             example might be a key that permits remote backups but nothing
             else.  Note that the client may specify TCP/IP and/or X11 for-
             warding unless they are explicitly prohibited.  Note that this
             option applies to shell, command or subsystem execution.

             Specifies that the string is to be added to the environment when
             logging in using this key.  Environment variables set this way
             override other default environment values.  Multiple options of
             this type are permitted.  Environment processing is disabled by
             default and is controlled via the PermitUserEnvironment option.
             This option is automatically disabled if UseLogin is enabled.

             Forbids TCP/IP forwarding when this key is used for authentica-
             tion.  Any port forward requests by the client will return an
             error.  This might be used, e.g., in connection with the command

             Forbids X11 forwarding when this key is used for authentication.
             Any X11 forward requests by the client will return an error.

             Forbids authentication agent forwarding when this key is used
             for authentication.

     no-pty  Prevents tty allocation (a request to allocate a pty will fail).

             Limit local ''ssh -L'' port forwarding such that it may only
             connect to the specified host and port.  IPv6 addresses can be
             specified with an alternative syntax: host/port.  Multiple
             permitopen options may be applied separated by commas. No pat-
             tern matching is performed on the specified hostnames, they must
             be literal domains or addresses.

     1024 33 12121...312314325

     from="*,!" 1024 35 23...2334 ylo@niksula

     command="dump /home",no-pty,no-port-forwarding 1024 33 23...2323

     permitopen="",permitopen="" 1024 33 23...2323

     The /etc/ssh/ssh_known_hosts and $HOME/.ssh/known_hosts files contain
     host public keys for all known hosts.  The global file should be pre-
     pared by the administrator (optional), and the per-user file is main-
     tained automatically: whenever the user connects from an unknown host
     its key is added to the per-user file.

     Each line in these files contains the following fields: hostnames, bits,
     exponent, modulus, comment.  The fields are separated by spaces.

     Hostnames is a comma-separated list of patterns ('*' and '?' act as
     wildcards); each pattern in turn is matched against the canonical host
     name (when authenticating a client) or against the user-supplied name
     (when authenticating a server).  A pattern may also be preceded by ''!
     to indicate negation: if the host name matches a negated pattern, it is
     not accepted (by that line) even if it matched another pattern on the

     Bits, exponent, and modulus are taken directly from the RSA host key;
     they can be obtained, e.g., from /etc/ssh/  The
     optional comment field continues to the end of the line, and is not

     Lines starting with '#' and empty lines are ignored as comments.

     When performing host authentication, authentication is accepted if any
     matching line has the proper key.  It is thus permissible (but not rec-
     ommended) to have several lines or different host keys for the same
     names.  This will inevitably happen when short forms of host names from
     different domains are put in the file.  It is possible that the files
     contain conflicting information; authentication is accepted if valid
     information can be found from either file.

     Note that the lines in these files are typically hundreds of characters
     long, and you definitely don't want to type in the host keys by hand.
     Rather, generate them by a script or by taking /etc/ssh/
     and adding the host names at the front.

     closenet,..., 1024 37 159...93, ssh-rsa AAAA1234.....=

             Contains configuration data for sshd.  The file format and con-
             figuration options are described in sshd_config(5).

     /etc/ssh/ssh_host_key, /etc/ssh/ssh_host_dsa_key,
             These three files contain the private parts of the host keys.
             These files should only be owned by root, readable only by root,
             and not accessible to others.  Note that sshd does not start if
             this file is group/world-accessible.

     /etc/ssh/, /etc/ssh/,
             These three files contain the public parts of the host keys.
             These files should be world-readable but writable only by root.
             Their contents should match the respective private parts.  These
             files are not really used for anything; they are provided for
             the convenience of the user so their contents can be copied to
             known hosts files.  These files are created using ssh-keygen(1).

             Contains Diffie-Hellman groups used for the "Diffie-Hellman
             Group Exchange".  The file format is described in moduli(5).

             chroot(2) directory used by sshd during privilege separation in
             the pre-authentication phase.  The directory should not contain
             any files and must be owned by root and not group or world-

             Contains the process ID of the sshd listening for connections
             (if there are several daemons running concurrently for different
             ports, this contains the process ID of the one started last).
             The content of this file is not sensitive; it can be world-read-

             Lists the public keys (RSA or DSA) that can be used to log into
             the user's account.  This file must be readable by root (which
             may on some machines imply it being world-readable if the user's
             home directory resides on an NFS volume).  It is recommended
             that it not be accessible by others.  The format of this file is
             described above.  Users will place the contents of their
   , and/or files into this file,
             as described in ssh-keygen(1).

     /etc/ssh/ssh_known_hosts and $HOME/.ssh/known_hosts
             These files are consulted when using rhosts with RSA host
             authentication or protocol version 2 hostbased authentication to
             check the public key of the host.  The key must be listed in one
             of these files to be accepted.  The client uses the same files
             to verify that it is connecting to the correct remote host.
             These files should be writable only by root/the owner.
             /etc/ssh/ssh_known_hosts should be world-readable, and
             $HOME/.ssh/known_hosts can, but need not be, world-readable.

             If this file exists, sshd refuses to let anyone except root log
             in.  The contents of the file are displayed to anyone trying to
             log in, and non-root connections are refused.  The file should
             be world-readable.

     /etc/hosts.allow, /etc/hosts.deny
             Access controls that should be enforced by tcp-wrappers are
             defined here.  Further details are described in hosts_access(5).

             This file contains host-username pairs, separated by a space,
             one per line.  The given user on the corresponding host is per-
             mitted to log in without a password.  The same file is used by
             rlogind and rshd.  The file must be writable only by the user;
             it is recommended that it not be accessible by others.

             If is also possible to use netgroups in the file.  Either host
             or user name may be of the form +@groupname to specify all hosts
             or all users in the group.

             For ssh, this file is exactly the same as for .rhosts.  However,
             this file is not used by rlogin and rshd, so using this permits
             access using SSH only.

             This file is used during .rhosts authentication.  In the sim-
             plest form, this file contains host names, one per line.  Users
             on those hosts are permitted to log in without a password, pro-
             vided they have the same user name on both machines.  The host
             name may also be followed by a user name; such users are permit-
             ted to log in as any user on this machine (except root).  Addi-
             tionally, the syntax "+@group" can be used to specify netgroups.
             Negated entries start with '-'.

             If the client host/user is successfully matched in this file,
             login is automatically permitted provided the client and server
             user names are the same.  Additionally, successful RSA host
             authentication is normally required.  This file must be writable
             only by root; it is recommended that it be world-readable.

             Warning: It is almost never a good idea to use user names in
             hosts.equiv.  Beware that it really means that the named user(s)
             can log in as anybody, which includes bin, daemon, adm, and
             other accounts that own critical binaries and directories.
             Using a user name practically grants the user root access.  The
             only valid use for user names that I can think of is in negative

             Note that this warning also applies to rsh/rlogin.

             This is processed exactly as /etc/hosts.equiv.  However, this
             file may be useful in environments that want to run both
             rsh/rlogin and ssh.

             This file is read into the environment at login (if it exists).
             It can only contain empty lines, comment lines (that start with
             '#'), and assignment lines of the form name=value.  The file
             should be writable only by the user; it need not be readable by
             anyone else.  Environment processing is disabled by default and
             is controlled via the PermitUserEnvironment option.

             If this file exists, it is run with /bin/sh after reading the
             environment files but before starting the user's shell or com-
             mand.  It must not produce any output on stdout; stderr must be
             used instead.  If X11 forwarding is in use, it will receive the
             "proto cookie" pair in its standard input (and DISPLAY in its
             environment).  The script must call xauth(1) because sshd will
             not run xauth automatically to add X11 cookies.

             The primary purpose of this file is to run any initialization
             routines which may be needed before the user's home directory
             becomes accessible; AFS is a particular example of such an envi-

             This file will probably contain some initialization code fol-
             lowed by something similar to:

             if read proto cookie && [ -n "$DISPLAY" ]; then
                     if [ 'echo $DISPLAY | cut -c1-10' = 'localhost:' ]; then
                             # X11UseLocalhost=yes
                             echo add unix:'echo $DISPLAY |
                                 cut -c11-' $proto $cookie
                             # X11UseLocalhost=no
                             echo add $DISPLAY $proto $cookie
                     fi | xauth -q -

             If this file does not exist, /etc/ssh/sshrc is run, and if that
             does not exist either, xauth is used to add the cookie.

             This file should be writable only by the user, and need not be
             readable by anyone else.

             Like $HOME/.ssh/rc.  This can be used to specify machine-spe-
             cific login-time initializations globally.  This file should be
             writable only by root, and should be world-readable.

     OpenSSH is a derivative of the original and free ssh 1.2.12 release by
     Tatu Ylonen.  Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos,
     Theo de Raadt and Dug Song removed many bugs, re-added newer features
     and created OpenSSH.  Markus Friedl contributed the support for SSH pro-
     tocol versions 1.5 and 2.0.  Niels Provos and Markus Friedl contributed
     support for privilege separation.

     scp(1), sftp(1), ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1),
     login.conf(5), moduli(5), sshd_config(5), sftp-server(8)

     T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen, SSH
     Protocol Architecture, draft-ietf-secsh-architecture-12.txt, January
     2002, work in progress material.

     M. Friedl, N. Provos, and W. A. Simpson, Diffie-Hellman Group Exchange
     for the SSH Transport Layer Protocol, draft-ietf-secsh-dh-group-
     exchange-02.txt, January 2002, work in progress material.

BSD                           September 25, 1999                          BSD